
Building Bridges, Connecting Communities

Kat Bailey

Dependency Injection in D8

Intro

● Rudimentary understanding of OOP assumed
● Big changes in D8

Agenda

● DI as a design pattern
● DI from a framework perspective
● Symfony-style DI
● DI in Drupal 8

Agenda

● DI as a design pattern

● DI from a framework perspective
● Symfony-style DI
● DI in Drupal 8

Why?

How?

Why Dependency Injection?

Goal: we want to write code
that is...

✔Clutter-free

✔Reusable

✔Testable

Doing It Wrong
1. An example in procedural code

function my_module_func($val1, $val2) {

 module_load_include('module_x', 'inc');

 $val1 = module_x_process_val($val1);

 return $val1 + $val2;

}

function my_module_func($val1, $val2) {

 module_load_include('module_x', 'inc');

 $val1 = module_x_process_val($val1);

 return $val1 + $val2;

}
✗ Clutter-free

✗ Reusable

✗ Testable

Doing It Wrong
1. An example in procedural code

2. An example in Object Oriented code

class Notifier {
 private $mailer;

 public function __construct() {
 $this->mailer = new Mailer();
 }

 public function notify() {
 ...
 $this->mailer->send($from, $to, $msg);
 ...
 }
}

class Notifier {
 private $mailer;

 public function __construct() {
 $this->mailer = new Mailer('sendmail');
 }

 public function notify() {
 ...
 $this->mailer->send($from, $to, $msg);
 ...
 }
}

class Notifier {
 private $mailer;

 public function __construct(Mailer $m) {
 $this->mailer = $m;
 }

 public function notify() {
 ...
 $this->mailer->send($from, $to, $msg);
 ...
 }
}

class Notifier {
 private $mailer;

 public function __construct(Mailer $m) {
 $this->mailer = $m;
 }

 public function notify() {
 ...
 $this->mailer->send($from, $to, $msg);
 ...
 }
}

$mailer = new Mailer();
$notifier = new Notifier($mailer);

Goal: we want to write code
that is...

✔Clutter-free

✔Reusable

✔Testable

Goal: we want to write code
that is...

✔Clutter-free

✔Reusable

✔Testable

Ignorant

The less your code knows, the more
reusable it is.

class Notifier {
 private $mailer;

 public function __construct(Mailer $m) {
 $this->mailer = $m;
 }

 public function notify() {
 ...
 $this->mailer->send($from, $to, $msg);
 ...
 }
}

$mailer = new Mailer();
$notifier = new Notifier($mailer);

class Notifier {
 private $mailer;

 public function
 __construct(MailerInterface $m) {
 $this->mailer = $m;
 }

 public function notify() {
 ...
 $this->mailer->send($from, $to, $msg);
 ...
 }
}

$mailer = new SpecialMailer();
$notifier = new Notifier($mailer);

class Notifier {
 private $mailer;

 public function
 __construct(MailerInterface $m) {
 $this->mailer = $m;
 }

 public function notify() {
 ...
 $this->mailer->send($from, $to, $msg);
 ...
 }
}

$mailer = new SpecialMailer();
$notifier = new Notifier($mailer);

Constructor Injection

Dependency Injection

Declaratively express dependencies in the
class definition rather than instantiating them

in the class itself.

Constructor Injection is not
the only form of DI

Setter Injection

class Notifier {
 private $mailer;

 public function
 setMailer(MailerInterface $m) {
 $this->mailer = $m;
 }

 public function notify() {
 ...
 $this->mailer->send($msg);
 }
}

$mailer = new Mailer();
$notifier = new Notifier();
$notifier->setMailer($mailer);

class Notifier {
 private $mailer;

 public function
 setMailer(MailerInterface $m) {
 $this->mailer = $m;
 }

 public function notify() {
 ...
 $this->mailer->send($msg);
 }
}

$mailer = new Mailer();
$notifier = new Notifier();
$notifier->setMailer($mailer);

Setter Injection

Interface Injection

Like setter injection, except there is an
interface for each dependency's setter
method.

Very verbose

Not very common

Dependency Injection
==

Inversion of Control

“Don't call us,

we'll call you!”

(The Hollywood Principle)

class Notifier {
 private $mailer;

 public function
 __construct(MailerInterface $m) {
 $this->mailer = $m;
 }

 public function notify() {
 ...
 $this->mailer->send($from, $to, $msg);
 ...
 }
}

$mailer = new Mailer();
$notifier = new Notifier($mailer);

class Notifier {
 private $mailer;

 public function
 __construct(MailerInterface $m) {
 $this->mailer = $m;
 }

 public function notify() {
 ...
 $this->mailer->send($from, $to, $msg);
 ...
 }
}

$mailer = new Mailer();
$notifier = new Notifier($mailer);?

Where does injection happen?

Where does injection happen?

➔ Manual injection
➔ Use a factory
➔ Use a container / injector

Using DI in a Framework

Dependency Injector
==

Dependency Injection Container (DIC)
==

IoC Container
 ==

Service Container

The Service Container

➔ Assumes responsibility for constructing
object graphs (i.e. instantiating your
classes with their dependencies)

➔ Uses configuration data to know how to
do this

➔ Allows infrastructure logic to be kept
separate from application logic

Objects as Services

A service is an object that provides some kind of
globally useful functionality

Examples of Services

➔ Cache Backend

➔ Logger

➔ Mailer

➔ URL Generator

Examples of Non-Services

➔ Product

➔ Blog post

➔ Email message

Source: Dependency Injection by Dhanji R. Prasanna, published by Manning

Source: Dependency Injection by Dhanji R. Prasanna, published by Manning

(Service Definitions)(Service Definitions)

(Control Flow)(Control Flow)

Source: Dependency Injection by Dhanji R. Prasanna, published by Manning

GettingGetting

““wired in”wired in”

Sample configuration

<services...>
 <service id=”notifier” class=”Notifier”>
 <constructor-arg ref=”emailer” />
 </service>
 <service id=”emailer” class=”Mailer”>
 <constructor-arg ref=”spell_checker” />
 </service>
 <service id=”spell_checker”
 class=”SpellChecker” />
</services>

How does it work?

➔ Service keys map to service definitions

➔ Definitions specify which class to
instantiate and what its dependencies
are

➔ Dependencies are specified as
references to other services (using
service keys)

➔ $container->getService('some_service')

Scope

The scope of a service is the context under which
the service key refers to the same instance.

Symfony's Dependency Injection
Component

Symfony's DI Component

➔ Service keys are strings, e.g. 'some_service'

➔ Service definitions, in addition to specifying
which class to instantiate and what
constructor arguments to pass in, allow you to
specify additional methods to call on the
object after instantiation

Symfony's DI Component

➔ Default scope: container

➔ Can be configured in PHP, XML or YAML

➔ Can be “compiled” down to plain PHP

Some Symfony Terminology

“Compiling” the container

It's too expensive to parse configuration on
every request.

Parse once and put the result into a PHP class
that hardcodes a method for each service.

“Compiling” the container

Class service_container extends Container {
 /**
 * Gets the 'example' service.
 */
 protected function getExampleService()
 {
 return $this->services['example'] = new
\Some\Namespace\SomeClass();
 }
}

“Synthetic” Services

A synthetic service is one that is not instantiated
by the container – the container just gets told
about it so it can then treat it as a service when
anything has a dependency on it.

Compiler passes

Compiler passes are classes that process the
container, giving you an opportunity to
manipulate existing service definitions.

Use them to:
● Specify a different class for a given service id
● Process “tagged” services

Tagged Services

You can add tags to your services when you
define them. This flags them for some kind of
special processing (in a compiler pass).

For example, this mechanism is used to register
event subscribers (services tagged with
'event_subscriber') to Symfony's event
dispatcher

Bundles

Bundles are Symfony's answer to plugins or
modules, i.e. prepackaged sets of functionality
implementing a particular feature, e.g. a blog.

Each bundle includes a class implementing the
BundleInterface which allows it to interact with
the container, e.g. to add compiler passes.

Symfony's Event Dispatcher
plays an important role in the

application flow.

Symfony's Event Dispatcher

➔ Dispatcher dispatches events such as
Kernel::Request

➔ Can be used to dispatch any kind of custom
event

➔ Event listeners are registered to the
dispatcher and notified when an event fires

➔ Event subscribers are classes that provide
multiple event listeners for different events

Symfony's Event Dispatcher

➔ A compiler pass registers all subscribers to
the dispatcher, using their service IDs

➔ The dispatcher holds a reference to the
service container

➔ Can therefore instantiate “subscriber
services” with their dependencies

class RegisterKernelListenersPass implements
 CompilerPassInterface {

 public function process(ContainerBuilder $container) {

 $definition = $container
->getDefinition('event_dispatcher');

 $services = $container
->findTaggedServiceIds('event_subscriber');

 foreach ($services as $id => $attributes) {
 $definition->addMethodCall('addSubscriberService',
array($id, $class));
 }
 }
}

A compiler pass iterates over the
tagged services

class CoreBundle extends Bundle {

 public function build(ContainerBuilder $container)
 {
 ...
 // Compiler pass for event subscribers.
 $container->addCompilerPass(new
 RegisterKernelListenersPass());
 ...
 }
}

Register the compiler pass

Dependency Injection in Drupal 8

Some D8 Services

➔ The default DB connection ('database')

➔ The module handler ('module_handler')

➔ The HTTP request object ('request')

Services:

 database:
 class: Drupal\Core\Database\Connection
 factory_class: Drupal\Core\Database\Database
 factory_method: getConnection
 arguments: [default]

 path.alias_whitelist:
 class: Drupal\Core\Path\AliasWhitelist
 tags:
 - { name: needs_destruction }

 language_manager:
 class: Drupal\Core\Language\LanguageManager

 path.alias_manager:
 class: Drupal\Core\Path\AliasManager
 arguments: ['@database',
 '@path.alias_whitelist', '@language_manager']

class AliasManager implements AliasManagerInterface {

 ...

 public function __construct(Connection $connection,

 AliasWhitelist $whitelist, LanguageManager

 $language_manager) {

 $this->connection = $connection;

 $this->languageManager = $language_manager;

 $this->whitelist = $whitelist;

 }

...

}

AliasManager's Constructor

2 ways you can use core's
services

1. From procedural code, using a helper:
Drupal::service('some_service')

2. Write OO code and get wired into the
container

Drupal's Application Flow

Get wired in as an event
subscriber

class MySubscriber implements
 EventSubscriberInterface {

 static function getSubscribedEvents() {
 $events[KernelEvents::REQUEST][] =
 array('onKernelRequest', 200);
 return $events;
 }

 public function onKernelRequest(GetResponseEvent
$event) {
 ...
 }

}

1. Implement
EventSubscriberInterface

Services:

 ...

 my_subscriber:
 class: Drupal\mymodule\MySubscriber
 tags:
 - { name: event_subscriber }

 ...

2. Write a service definition and
add the 'event_subscriber' tag

How to get your controller
wired in?

Controllers as Services?

➔ Controllers have dependencies on services

➔ Whether they should be directly wired into
the container is a hotly debated topic in the
Symfony community

➔ Recommended way in D8 is not to make
controllers themselves services but to
implement a special interface that has a
factory method which accepts the container

➔ See book module for an example!

Don't inject the container!
Ever.

(Unless you absolutely must)

Where does it all happen?

➔ The Drupal Kernel:
core/lib/Drupal/Core/DrupalKernel.php

➔ Services are defined in:
core/core.services.yml

➔ Compiler passes get added in:
core/lib/Drupal/Core/CoreBundle.php

➔ Compiler pass classes live here:
core/lib/Drupal/Core/DependencyInjection/
Compiler/...

What about modules?

➔ Services are defined in:
mymodule/mymodule.services.yml

➔ Compiler passes get added in:
mymodule/lib/Drupal/mymodule/MymoduleB
undle.php

➔ All classes, including compiler pass classes,
must live in
mymodule/lib/Drupal/mymodule/

Easy testability with DI and
PHPUnit

PHPUnit Awesomeness

// Create a language manager stub.
$language_manager = $this
 ->getMock('Drupal\Core\Language\LanguageManager');

$language_manager->expects($this->any())
 ->method('getLanguage')
 ->will($this->returnValue((object) array(
 'langcode' => 'en',
 'name' => 'English')));

PHPUnit Awesomeness

// Create an alias manager stub.
$alias_manager = $this
 ->getMockBuilder('Drupal\Core\Path\AliasManager')
 ->disableOriginalConstructor()
 ->getMock();

$alias_manager->expects($this->any())
 ->method('getSystemPath')
 ->will($this->returnValueMap(array(
 'foo' => 'user/1',
 'bar' => 'node/1',
)));

Resources

These slides and a list of resources on DI and
its use in Symfony and Drupal are available at

http://katbailey.github.io/

Questions?

Building Bridges, Connecting Communities

Evaluate this session at:
 portland2013.drupal.org/schedule.

Thank you!

What did you think?

	Slide4
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide8

